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We began to discuss the physics of oscillations. Any system with a minimum in the potential
energy landscape U (X) can have small harmonic oscillations around the minimum in the potential. The

Hooke’s law spring constant is just the local curvature of the potential at the minimum:

k=d?U/dx?

. A one-dimensional harmonic oscillator of mass M obeys the equation MX = —KkX .

Xo

Dividing through by M and defining the natural oscillation frequency @, =+K/m, the equation

becomes X = —a)OZX. This equation can be solved in numerous ways, and the solutions can be written in

several canonical forms, including:

1) x(t)=C,e'* +C,e

2) X(t) = B, cos(at) + B, sin(at)
3) x(t) = Acos(wt — )

4) X(t) = Re[Ae' ]

All of these forms can be related to each other, as you will prove in homework.

We also considered the energy in simple harmonic motion. The total mechanical energy is

E=T+U =(m/2)%* +(k/2)x*. Using form 3 above (for example), this can be written as
E = (k/2)A?, which is constant. The kinetic and potential energies are both varying with time as

sin?(wt — &) and cos? (wt — &), respectively. They both oscillate between 0 and E twice per period of

oscillation, and are exactly 180° out of phase. The shuttling of energy back and forth between two
different forms (in this case potential and kinetic) is a hallmark of simple harmonic oscillation, and
resonance.

We considered un-driven damped oscillations produced by a damping force that is linear
in velocity mX + bx + kx = 0. This mechanical oscillator is a direct analog of the electrical
oscillator made up of an inductor (L), resistor (R) and capacitor (C) in series. The charge on the

capacitor plate q(t) obeys the same equation: Lg + Rq + %q = 0. The analogy is strong, as
shown in the following table.

Mechanical Oscillator Electrical Oscillator
Position x Charge on capacitor plate q
Mass m Inductance L
Damping b Resistance R
Spring constant k Inverse Capacitance 1/C




| Natural frequency ay = [k/m]*? | Natural frequency wy = 1/[LC]*?

Divide the mechanical equation through by mass m and define two important rates: ¥ + 28x +
wix = 0, where 28 = b/m, and w3 = k/m. We tried a solution of the form x(t) = "¢, and

found an auxiliary equation with solution r = —f + /32 — w3. The general solution is
2_y2 — 2_y2
x(t) =e Pt lCle\]B P4 Che Ve tl. The form of the solution depends critically on the

relative size of the two rates £ and wy.

1) Un-damped oscillator 8 = 0. The radical becomes \/—wZ = i\/wZ = iwy, and the
solution reverts to our previous results x(t) = C;e'®0 t + C,e™i@o t,

2) Weak damping (8 < w,). The radical also produces a factor of “i”, resulting in x(t) =
e Pt[C et + Cre~i@1t], with w, = /w? — B2 a frequency lower than the un-damped
natural frequency. This equation describes oscillatory motion under an exponentially
damped envelope. The damping rate is f. One can re-write the solution as x(t) =
Ae Pt cos(w,t — 8).

3) Strong damping (B > w,). In this case /B2 — w is real and the solution is x(t) =

-\ B- /ﬂz—w2> t —<ﬁ+ /32—w2> t .. . .
C,e ( )+ Che °J". This is a sum of two negative exponentials, one
of which decays faster than the other — there is no oscillation.

We next considered a driven damped harmonic oscillator. We take the driving function to be
harmonic in time at a new frequency called simply w, which is an independent quantity from the
natural frequency of the un-damped oscillator, called w,. The equation of motion is now
¥+ 2Bx% + wix = f, cos(wt). We now employ a trick similar to that used to solve for the
velocity of a charged particle in a uniform magnetic field. Consider the complementary problem
of the same damped oscillator being driven by a force 90° out of phase, with solution y(t):

y + 2By + wiy = f, sin(wt). Now define a complex combination of the two unknown
functions z(t) = x(t) + iy(t). Combine the two equations in the form of “x-equation” + i "’y-
equation”. This can be written more succinctly as Z + 282 + w3z = fye'“t. Note that the
solution to the original problem can be found from x(t) = Re[z(t)].

We now want to solve this equation: Z + 282 + w3z = fye'“t. We tried a solution of the
fo

——— We
wi-w?+i2fw

form z(t) = Ce'®*t and found this expression for the complex pre-factor: C =

can write this complex quantity as a magnitude and phase as C = Ae~%, where A4 is the
amplitude and § is the phase, both real numbers. Solving for A and § in terms of the oscillator
) 2 _ 2fw
arameters gives A2 = 3 ,and § = tan™?!
P | (03-w?) +(2hw)? an™ (5

solution to the “z equation” as z(t) = Ce!®t = Aei(wt=9),

). Finally, we can write the
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The answer to the original problem is just the real part of this expression: x(t) =
Re[z(t)] = A cos(wt — &), where w is the frequency of the driving force. This represents
the long-time persistent solution of the motion. It shows that the oscillator eventually adopts
the same frequency as the driving force. In addition there is a solution to the homogeneous

2_,y2
problem ¥ + 2Bx + wx = 0, which we solved before: x, (t) = e #* lclexlﬂ @oty

— 2_(y2
C,e JFres tl. The full solution is the sum of the particular solution and the homogeneous

solution. In the case of small loss (8 < w) the full solution can be written as x(t) =
Acos(wt — 8) + A €78t cos(w,t — 8,,-), where the first part is the particular solution and
the second part is the transient (homogeneous) solution. We call it transient because of the
e~ Pt factor, which shows that the initial motion and initial conditions (specified by A,, and
&¢) will eventually die off and the persistent motion will dominate.



